See 超越次數 on Wiktionary
{ "forms": [ { "form": "超越次数", "raw_tags": [ "Simplified Chinese" ] } ], "head_templates": [ { "args": { "1": "zh", "2": "noun" }, "expansion": "超越次數", "name": "head" } ], "lang": "Chinese", "lang_code": "zh", "pos": "noun", "senses": [ { "categories": [ { "kind": "other", "name": "Chinese entries with incorrect language header", "parents": [ "Entries with incorrect language header", "Entry maintenance" ], "source": "w" }, { "kind": "other", "name": "Pages with 1 entry", "parents": [], "source": "w" }, { "kind": "other", "name": "Pages with entries", "parents": [], "source": "w" }, { "kind": "topical", "langcode": "zh", "name": "Algebra", "orig": "zh:Algebra", "parents": [ "Mathematics", "Formal sciences", "Sciences", "All topics", "Fundamental" ], "source": "w" } ], "examples": [ { "english": "Particularly, the extension field of K is algebraic if and only if its transcendence degree on K is zero.", "raw_tags": [ "MSC", "Traditional Chinese" ], "ref": " 2003, 朱尧辰 (Zhu Yaochen), 徐广善 (Xu Guangshan), 《超越数引论》 [Introduction to Transcendental Number]", "roman": "Tèbié, K de kuòyù shì dàishù de, dāngqiějǐndāng tā zài K shàng de chāoyuè cìshù wèi líng.", "tags": [ "Pinyin" ], "text": "特別,K的擴域是代數的,當且僅當它在K上的超越次數為零。", "type": "quote" }, { "english": "Particularly, the extension field of K is algebraic if and only if its transcendence degree on K is zero.", "raw_tags": [ "MSC", "Simplified Chinese" ], "ref": " 2003, 朱尧辰 (Zhu Yaochen), 徐广善 (Xu Guangshan), 《超越数引论》 [Introduction to Transcendental Number]", "roman": "Tèbié, K de kuòyù shì dàishù de, dāngqiějǐndāng tā zài K shàng de chāoyuè cìshù wèi líng.", "tags": [ "Pinyin" ], "text": "特别,K的扩域是代数的,当且仅当它在K上的超越次数为零。", "type": "quote" } ], "glosses": [ "transcendence degree" ], "id": "en-超越次數-zh-noun-D6Bm8iUW", "links": [ [ "algebra", "algebra" ], [ "field extension", "field extension" ], [ "transcendence degree", "transcendence degree" ] ], "qualifier": "field theory", "raw_glosses": [ "(algebra, field theory, of a field extension) transcendence degree" ], "raw_tags": [ "of a field extension" ], "topics": [ "algebra", "mathematics", "sciences" ] } ], "sounds": [ { "tags": [ "Mandarin", "Pinyin" ], "zh-pron": "chāoyuè cìshù" }, { "tags": [ "Mandarin", "bopomofo" ], "zh-pron": "ㄔㄠ ㄩㄝˋ ㄘˋ ㄕㄨˋ" }, { "tags": [ "Hanyu-Pinyin", "Mandarin" ], "zh-pron": "chāoyuè cìshù" }, { "tags": [ "Mandarin", "Tongyong-Pinyin" ], "zh-pron": "chaoyuè cìhshù" }, { "tags": [ "Mandarin", "Wade-Giles" ], "zh-pron": "chʻao¹-yüeh⁴ tzʻŭ⁴-shu⁴" }, { "tags": [ "Mandarin", "Yale" ], "zh-pron": "chāu-ywè tsz̀-shù" }, { "tags": [ "Gwoyeu-Romatsyh", "Mandarin" ], "zh-pron": "chauyueh tsyhshuh" }, { "tags": [ "Mandarin", "Palladius" ], "zh-pron": "чаоюэ цышу" }, { "tags": [ "Mandarin", "Palladius" ], "zh-pron": "čaojue cyšu" }, { "ipa": "/ʈ͡ʂʰɑʊ̯⁵⁵ ɥɛ⁵¹⁻⁵³ t͡sʰz̩⁵¹⁻⁵³ ʂu⁵¹/", "tags": [ "Mandarin", "Sinological-IPA" ] }, { "ipa": "/ʈ͡ʂʰɑʊ̯⁵⁵ ɥɛ⁵¹⁻⁵³ t͡sʰz̩⁵¹⁻⁵³ ʂu⁵¹/" } ], "word": "超越次數" }
{ "forms": [ { "form": "超越次数", "raw_tags": [ "Simplified Chinese" ] } ], "head_templates": [ { "args": { "1": "zh", "2": "noun" }, "expansion": "超越次數", "name": "head" } ], "lang": "Chinese", "lang_code": "zh", "pos": "noun", "senses": [ { "categories": [ "Chinese entries with incorrect language header", "Chinese lemmas", "Chinese nouns", "Chinese terms spelled with 數", "Chinese terms spelled with 次", "Chinese terms spelled with 超", "Chinese terms spelled with 越", "Chinese terms with IPA pronunciation", "Mandarin lemmas", "Mandarin nouns", "Mandarin terms with quotations", "Pages with 1 entry", "Pages with entries", "zh:Algebra" ], "examples": [ { "english": "Particularly, the extension field of K is algebraic if and only if its transcendence degree on K is zero.", "raw_tags": [ "MSC", "Traditional Chinese" ], "ref": " 2003, 朱尧辰 (Zhu Yaochen), 徐广善 (Xu Guangshan), 《超越数引论》 [Introduction to Transcendental Number]", "roman": "Tèbié, K de kuòyù shì dàishù de, dāngqiějǐndāng tā zài K shàng de chāoyuè cìshù wèi líng.", "tags": [ "Pinyin" ], "text": "特別,K的擴域是代數的,當且僅當它在K上的超越次數為零。", "type": "quote" }, { "english": "Particularly, the extension field of K is algebraic if and only if its transcendence degree on K is zero.", "raw_tags": [ "MSC", "Simplified Chinese" ], "ref": " 2003, 朱尧辰 (Zhu Yaochen), 徐广善 (Xu Guangshan), 《超越数引论》 [Introduction to Transcendental Number]", "roman": "Tèbié, K de kuòyù shì dàishù de, dāngqiějǐndāng tā zài K shàng de chāoyuè cìshù wèi líng.", "tags": [ "Pinyin" ], "text": "特别,K的扩域是代数的,当且仅当它在K上的超越次数为零。", "type": "quote" } ], "glosses": [ "transcendence degree" ], "links": [ [ "algebra", "algebra" ], [ "field extension", "field extension" ], [ "transcendence degree", "transcendence degree" ] ], "qualifier": "field theory", "raw_glosses": [ "(algebra, field theory, of a field extension) transcendence degree" ], "raw_tags": [ "of a field extension" ], "topics": [ "algebra", "mathematics", "sciences" ] } ], "sounds": [ { "tags": [ "Mandarin", "Pinyin" ], "zh-pron": "chāoyuè cìshù" }, { "tags": [ "Mandarin", "bopomofo" ], "zh-pron": "ㄔㄠ ㄩㄝˋ ㄘˋ ㄕㄨˋ" }, { "tags": [ "Hanyu-Pinyin", "Mandarin" ], "zh-pron": "chāoyuè cìshù" }, { "tags": [ "Mandarin", "Tongyong-Pinyin" ], "zh-pron": "chaoyuè cìhshù" }, { "tags": [ "Mandarin", "Wade-Giles" ], "zh-pron": "chʻao¹-yüeh⁴ tzʻŭ⁴-shu⁴" }, { "tags": [ "Mandarin", "Yale" ], "zh-pron": "chāu-ywè tsz̀-shù" }, { "tags": [ "Gwoyeu-Romatsyh", "Mandarin" ], "zh-pron": "chauyueh tsyhshuh" }, { "tags": [ "Mandarin", "Palladius" ], "zh-pron": "чаоюэ цышу" }, { "tags": [ "Mandarin", "Palladius" ], "zh-pron": "čaojue cyšu" }, { "ipa": "/ʈ͡ʂʰɑʊ̯⁵⁵ ɥɛ⁵¹⁻⁵³ t͡sʰz̩⁵¹⁻⁵³ ʂu⁵¹/", "tags": [ "Mandarin", "Sinological-IPA" ] }, { "ipa": "/ʈ͡ʂʰɑʊ̯⁵⁵ ɥɛ⁵¹⁻⁵³ t͡sʰz̩⁵¹⁻⁵³ ʂu⁵¹/" } ], "word": "超越次數" }
Download raw JSONL data for 超越次數 meaning in All languages combined (3.0kB)
{ "called_from": "pronunciations/296/20230324", "msg": "Zh-pron header not found in zh_pron_tags or tags: '(Standard Chinese)⁺'", "path": [ "超越次數" ], "section": "Chinese", "subsection": "", "title": "超越次數", "trace": "" }
This page is a part of the kaikki.org machine-readable All languages combined dictionary. This dictionary is based on structured data extracted on 2025-01-15 from the enwiktionary dump dated 2025-01-01 using wiktextract (b941637 and 4230888). The data shown on this site has been post-processed and various details (e.g., extra categories) removed, some information disambiguated, and additional data merged from other sources. See the raw data download page for the unprocessed wiktextract data.
If you use this data in academic research, please cite Tatu Ylonen: Wiktextract: Wiktionary as Machine-Readable Structured Data, Proceedings of the 13th Conference on Language Resources and Evaluation (LREC), pp. 1317-1325, Marseille, 20-25 June 2022. Linking to the relevant page(s) under https://kaikki.org would also be greatly appreciated.